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Anomalous scaling of superrough growing surfaces: From correlation functions to residual local
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A study on the(1+ 1)-dimensional superrough growth processes is undertaken. We first work out the exact
relations among the local interfacial width, the correlation functiorG, and thepth degree residual local
interfacial widthw, with p=1,2,3,.... Therelations obtained are exact and thus can be applied to(any
+1)-dimensional growth processes in the continuum limit, no matter whether the interface is superrough or not.
Then we investigate the influence of the macroscopic structure formation on the scaling behavior of the
superrough growth processes. Moreover, we show analytically that the residual local interfacialmyidth
excludes only the influence of the macroscopic structure on the scaling behavior of the system and retains the
true scaling behavior originating from the stochastic nature of the system. Finally, we analyze and simulate
some superrough growth models for demonstration.
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I. INTRODUCTION namic scaling ansatfl4], distinct from the usual Family-
S : . Vicsek dynamic scaling ansafz7].

Kinetic interfacial roughening phenomena have been of 1q jfterface configurations of these superrough growth
great ]nterest for the past two decadlés4]. Recently, much processes gradually develop global mountains or valifeys
attention has b_een foc_usgd on sm_Jperrough growth processggample, see the figures in Refd1,12,19), which have
because of their peculiar interfacial morphold@y-16: the  great influence on the scaling behavior of the system. This
saturated global mterfa(_:la_l widths diverge faster than the SYSshenomenon can be easily understood: all these superrough
tem sizel.. The most distinct feature of the superrough in-grquth processes are associated with local interfacial orien-
terface is that its local scaling deviates from the usuallyiaiional instability but, at the same time, with fixed or peri-
Family-Vicsek dynamic scaling functiofL7]. This anoma- ¢ poundary conditions restricting the development of glo-
lous scaling behavior has been so widely observed numerjs) jnterface tilt. Interestingly, various fluctuating time series
cally, analytically, and experimentally, ranging from ,.oplems such as physiological signals, atmospheric variabil-
molecular-beam epitaxial grow{—8], interface advance in iy currency exchange rates, and DNA sequences all show
porous medig9], wood fracture surfaceld0], electrochemi-  rangs in addition to the statistical heterogendit@]. The
cal deposition[11,13, even to brain tumor growtl13]. eneralized detrended fluctuation analysis method, proposed
Among all the experimentally accessible quantities, one of, systematically exclude the effect of trends by a power
the most informative quantities is the correlation functionggries expansion, has recently been numerically studied in
G(r,t) defined as[h(x,t) ~h(x+r DI, with h(x, 1) denoting  getajl in Ref.[18]. Expressed in terms of the Legendre poly-
the interface height and--),, throughout the paper, denoting nomial, we analytically worked out the explicit expression
the spatial average over the whole system of lateral kize for the trends of fluctuating systems to any order and pointed
(there is also an implicit ensemble average when this igut the possibility of applying the generalized detrended
needegl Various superrough growth processes obey the folfluctuation analysis method to superrough interfacial rough-

lowing anomalous dynamic scaling ansgt2]: ening processes in Refl19]. However, there still remain
some unresolved issugd) The spirit of the generalized de-
G(r,t) = [r[?*f(|r|it,|r|/L) (1) trended fluctuation analysis method is to eliminate the influ-
. . . ence of the background on the scaling behavior of the sys-
with the scaling function tem. However, a rigorous proof is still lacking that this

(|r|/t1’z)‘2“ for |r| > iz detr.endin.g.opgration itself will not a]ter the true scaling be-
' havior originating from the stochastic nature of the system.
f(|r/AY2]r|iL) ~ | (rlt=2< for L>t"2>r[,  (2)  (2) The explicit relations among the correlation function, the
(|r|/y=2« for t¥z> |, original local interfacial width, and the residual local inter-
facial width (relative to the macroscopic structitgave not
Here, the two independent scaling exponeats&ind z are  been worked out. In this paper, we would like to work out
given the names roughness exponent and dynamic exponethe above two issues in detail. We will focus on
respectively. Note that the appearance of a third nonzero in- + 1)-dimensional superrough growth processes and explore
dependent exponenrtis the signature of this anomalous dy- the subtleties in extracting the scaling exponents. The outline
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of this paper is as follows. First, the exact relations among
the local interfacial widthw, the correlation functiors, and

the pth degree residual local interfacial width,, with p
=1,2,3,...,will be derived. Subsequently, we will explore
their scaling relations and the influence of the macroscopic
structure formation on the scaling exponents. Finally, the im-
plications of the obtained results and their applicability to
various fluctuating systems will be discussed.

II. RESIDUAL LOCAL INTERFACIAL WIDTH AND —_—
CORRELATION FUNCTION (@)

First, let h(x,t) denote the 1+1-dimensional interface
height at a certain timeand the lateral positior in a con-
tinuous system. One realization of the local interfacial width
in an observation window, centeredsatof lengthl(<L) is
then given by

WA(15%;8) = (Th(x, 1) = (D)1, 3

with (---);.; denoting throughout this paper the spatial aver-
age over an observation window, centerec,aof lengthl.
Using apth degree polynomial to extract the contribution
from macroscopic structure formation, the correspongiigy
degree residual local interfacial width in that observation
window of lengthl is defined as

h(x)

(b)

FIG. 1. (@ A typical interface configuration of
(1+1)-dimensional superrough growth processés. The solid

AP . curve represents the interfacial configuratiofx) within a local
where thepth degree polynomiat,(x;X;1) is obtained from a0 of sizel (< the lateral system sizke) extracted from(a).

a least squares fit th(x,t) within that observation window. The dotted, dashed, and dash-dotted curves in the left, middle, and

w(15%:1) = ([h(x,1) = hyOa %0125, 4

Figurg .1 givgs a pictorial illustration about tht_e above relatedright sections represent tipth degree po|ynomidTup(x) with p=1,
qqantltles. Since the '—ege_”dfe PO'V”OWFP‘%[X) IS a polyno- 2, and 3, respectively, obtained from least squares fits to the inter-
mial of degreeq and satisfies the orthogonal relatidi2s)] facial configuration in that local window.
1
2
J dXPy(X)Pg () = 2q—+15q,q’a (®  (WA(I;X;1)), it is straightforward to obtain the relatiqi6]
-1
we thus choose the Legendre polynonitg{2(x—X)/l) to be 1
the basis ohy(x;X;t); namely, W2l 0), = I—ZJ dr(l = r)G(r,t). 9
0
p ~
A 2(x—=X)
ho(X;X;t) = 2 CqPq( | ) (6)
=0 Subsequently, by applying Eq&) and(7), it is straightfor-
with the coefficient ward to derive the relatio[h(x,t) —hp(x; X;t) Jhg(X; X; 1)1
2x-%) =0. Thus,
Cq:(2q+1)<h(x,t)Pq< I )>| (7)
X N
LOet) — _ T Y AR
obtained from the relation wi%0) = ([h(x,D) — pOcRit) P
= ([ D) = Ay DTN D)
m,zg(ilc;x't) o, ® p ) B
1
. - | = (P(xO)x— > 5~ C2 (10
To be self-contained, we listed Eqg)—(7), which were de- "o 029+l

rived in Ref.[19]. For details of the derivation, see RET9).

Now we will employ the above results to work out ex-
plicit and exact relations among the original local interfacialBy using the definition ofw?(I;%;t) and Eq.(7), we then
width, the correlation function, and thgth degree residual obtain the relation betweew?(I;%;t) and vvrz)(l ;X;t) as fol-
local interfacial width. From the definition o6(r,t) and  lows:
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112—r

p 14 4
wh(1:%:1) = WA %;1) - 2—02 (11) Ky(r) = > (29 + 1) dr”Pq<2(r+r)>Pq{2L]_

g=1 2 g=0 -1/2 l I
Then we will employ the above obtained results to derive the (15
exact relation betweefw’(I;X;t)). and G(r,t). From Eq.  Thus, we have succeeded in obtaining the exact relations
(), among(wz(l X:0)L, G(r,1), and(wa(l;X;1)).. The relations

5 2 /2 , obtained are exact and thus can be applied to any
(CPy, = (2q+ 1) f f 4P <2r > (2L><h(x (1+1)-dimensional growth processes in the continuum limit,
VL 2 no matter whether the interface is superrough or not.
, , We will further explore the properties of the kerng|(r),
+r' Hh(X+r", 1) (120 since they have a great influence on the scaling relations
among (w?(l;X;t)),, G(r,t), and <w2(l X;t)).. The kernel
Kp(r) can be recast as follows:

112

By employing the definition ofG(r’-r",t) and the well-
known property ofP4(x) [20] ﬁqu(x)dx:O forallg=1, we

then have P ro #\2
Ko(r) =2 I—(2q+1)J diPg(1-2(-| | |. (16)
(2q + 1)2 112 112 2 o =0 0 [
(CoopL=- f dr’Pg Pol = . o o
2 12 I The detailed derivation of Eq16) from Eq.(15) is given in

Appendix A. Then, from Eq(16) and the definition of Leg-
XG(r' =r",1) endre polynomiaP(x), it is straightforward to tell that the
_(29+1)? 172-r 2(r +1") kernelK(r) is a polynomial ofr with terms of odd power up

2 f drG(r, t)f dr"P. (f) to degree p+1 plus a constant term. For illustratioig(r)
to K4(r) are explicitly listed as follows:

qu(zl_r")_ (13 Ko(r) =1-r,

112

— _ 3/12
Substituting Eqs(9) and(13) into Eq.(11), we consequently Ka(r) =21 =dr + 2091,

obtain the exact relation betweéwz(l ;X;t), andG(r,t) as Ky(r) = 31 — 9r + 12012 - 6r¥/1*,

W% 0), = f drG(r,t)Ky(r) (14) Ka(r) =4l - 16r + 40312 - 48514+ 2016, (17)
The most important feature of the kerng|(r) is as follows:
with the kernel with B8 an arbitrary positive numbé&mcluding nonintegens

| 0 for p=1,2,...p,
[REGE B{ (- D(p+ VLB (B+D) - 18
o [ 4B+ 2T B-prB+p+2 otherwise.
[
The detailed derivation is given in Appendix B. G(r,t) = Gracrdl 1) + G, 1) (20

Now, we will apply the above obtained results to investi-

gate the scaling relations amorg?(l;X;t)),, G(r,t), and ith q q ) h ibuti

(vvf)(l;k;t)),_ in detail. We first rewriten(x,t) as }':”t GrmacrdT, 1) an _GStO(r’t) enoting the contrl u_tlons
om the macroscopic structure and from the noise-induced

fluctuation relative to the macroscopic structure, respectively.

Supposing the macroscopic structure to be continuous and

smooth, the ternG,,.dr,t) is expected to be analytic in

Note thatG(r,t) is adifferencecorrelation function, so one

has G(-r,t)=G(r,t) and G(0,t)=0. Thus, the power series

h(%,t) = hmacrd X,t) + Ngo(X, 1), (19

in which h...dX,t) denotes the height of the macroscopic . .
structure at positiorx and timet, and hgx,t) denotes the expansion 0fGmacdf,t) should contain only those terms

noise-induced height fluctuation relative to the macroscoplwIth even pgwer without the constant term, i.€macdr 1)
structure. By substituting the above expression ligx,t)  =2q _Asg(Dr?9. In addition, suppose thir ,t) is equal to
into the definition ofG(r,t), it is straightforward to obtain A2a(t)|r|2“ with « being a positive noninteger number, dis-
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tinct from the macroscopic structure. From Eg), we have m
G(r Doz, = 2 Byl Ir?a+ By Jr2e, (25)
o=1

|
<W2(| X)L = Ilgf dr(l = N)[Gmacrdr 1) + Ggidr,1)]
0

respectively, withL denoting the lateral system size. The

o A detailed derivation was given in Rg6]. Note that the terms
=3 Agy(t) |29 (2a-Dizg2 (202 (2a-mrDize2m-2) and
1L 29+ 1)(2q+2) (LAaDp2 | 2Ae=2pd ) ety 2m2) que to the macro-

(21) Ir|?/v<t<L? v and the late time regimée>L?% v, respec-
tively, are all dominant over the true scaling tejmi® origi-
nating from the stochastic nature of the system. As we
showed in the previous section, the square of the local inter-
facial width (W?(l;%;t)), will have exactly the same
asymptotic behavior as that of the correlation function
G(r,t), namely,

- scopic structure formation in the intermediate time regime
AZa(t) 2ua

2a+1)(2a+2)

We see that the scaling behavior @#*(1;%;t)), is exactly
the same as that &(r,t). In contrast, by employing Eq14)
and the above obtained most important featur gf) given
in EqQ. (18), we have

o1 -
<Wl23(| !th)>L - |_2,[0 der(r)[GmaCI’({rst) + Gsto(rat)] <W2(| ;g(;t)>L|IZ/v<t<LZ/V —_ E qutZ(a—Q)/z| 2q + A;a|2a
g=1
s [(— DP(p+ D@L+ DAg() } 2 (26)
april (40+2T(q-p)l(q+p+2) and

(- DP(p+ DI (@I (a+ DAg (D) | 5, ) "
(da+ 2T (a-p)l(a+p+2) ' W) L, = 21 BY L2 I+ By I2. (27)

q:

(22 Thus, the termgt?@1/72 {2e-2/z4 - 2le-mtl)iz2m=2) gnpg
Indeed, the term@?,14, ... I?) in (W2(I;X;1))_ due to mac- (212 | 2a2j4 | 2e-mD|2m2) que to the macro-
roscopic structure formation have been successfully supscopic structure formation in the intermediate time regime
pressed here and, at the same time, the téfntlue to the |7/ <t<L%/» and the late time regimeés L%/ v, respec-
stochastic nature still remains. Consequently, we have rigotively, are all dominant over the true scaling tefffi.
ously shown that the residual local interfacial width  Since the leading anomalous terms in the intermediate and
(W5(I;%; 1)) excludes only the influence of the macroscopiclate time asymptotes of the square of the local interfacial
structure on the scaling behavior of the system and retainwidth are simply polynomials of with even power from?
the true scaling behavior originating from the stochastic naup to 1?™?2, the (m-1)th order detrending of the original

ture of the system. interface configurationfi.e., the subtraction of,_4(X,t)
Il APPLICATIONS :E;”;(}Cq(t)Pq(Z(x—&)/I) from h(x,t)] is necessary in order
to extract the roughness exponent from the true scaling term
In the following, we will apply the above obtained rela- originating from the stochastic nature of the system. For sys-
tions to some interfacial growth processes. First, we considaems obeying conventional Family-Vicsek scalifig], sev-
the following interfacial growth equations in 1+1 dimen- eral works[21-24 in the literature have pointed out that the
sions[6]: typical method of measuring the roughness exponents,
- mt1, 42m i.e., |0g1d:G(r,t)/G(I”,t)]/2 |OglO(|r|/|r,|) t>[r|z and [r'|?
00 = CDMETRO * X023 o g, %09 WA 090112 oG 117 s,
with integerm=2, where 7(x,t) denotes white noise with does not give reliable estimates in practical situations with
zero mean. By using a scaling analysis, it is straightforwardinite time, finite system size, and finite spatial resolution. In
to obtain the dynamic exponemt=2m and the roughness contrast, for systems with macroscopic structure formation,
exponeniwv=(2m-1)/2. For integem= 2, the roughness ex- the typical method does not give correct estimates of the
ponenta>1 and, thus, the interfacial growth processes defoughness exponent even in the continuum lifhé., large
scribed by the above class of growth equations display swsystem size and large timeFor systems obeying conven-
perroughening phenomena. The asymptotes of th&onal Family-Vicsek scaling, the detrending operation can-
correlation functionG(r,t) in the intermediate time regime not improve the deviation of the numerically estimated scal-
[r|?/ v<t<L? v and the late time regime>L?/v are given ing exponents from the theoretical valugiie to finite size
by and/or finite time effects while for systems with macro-
scopic structure formation, the detrending operation is a
“must do” in order to get reliable estimates of scaling expo-
nents.
Next, we study the curvature modg4] in 1+1 dimen-
and sions. The growth rule is given as followd.) A site is cho-

G(ryt)|\r\zlv<t<LZ/V = E Aéth(a—q)/ZrZC] + Aéa|r|za (24)
=

036115-4



ANOMALOUS SCALING OF SUPERROUGH GROWING. PHYSICAL REVIEW E 70, 036115(2004)

T T T T T [ 2 T T T T I
o _.nl..-"".. - SIA "
S.A a® ,: _3_ -
: - = 55B00 3 2
2 P S Wi
N\§/ -2 ......n — \\%_4_ .
= ® ’
@ = s
4 - rl=8 _ 2 2 . 1=8 7]
e ég £ s ow - 16
~ = | ° 32 -
3 64 R 64
o o128 | £ . 128
ke — slope=3/4 5 4L — slope=3/4 i
--- slope=1/4 &
A e ——
log, (/r), log,(¢/1°) log,(#11%)
FIG. 2. The log-log plots of G(r,t)/r** vs t/r* and FIG. 3. The log-log plots of (Wi(l;X;t)) /I>* and

WA 0)/1%* vs t17 with @=3/2 and z=4 for the  (WA(I;%;0)) /1% vs t/I? with @=3/2 and z=4 for the
(1+1)-dimensional curvature model. The solid and dashed lineg1 +1)-dimensional curvature model.

with the slopes 3/4 and 1/4, respectively, are merely drawn for a
guide to the eye. .

@ ,p(t) = |0910(M)/2 |0910(|_1>

2P <W,2)(|2;>A(§t)>|_ I

sen randomly(2) The freshly landed atom relaxes immedi-
ately to the site with the largest local curvatuig;+h,,;  with p=1 or 2. Figure 4 shows the effective roughness ex-
—2h; among this site and its nearest neighbors. We first meaaonentml”z,p(t) vs the rescaled timg|5 with z=4 in a semi-
sure the local interfacial width and the equal-time height dif-logarithmic plot. Note that the result fgr=2 is shifted up-
ference correlation function with the system size8192  ward by 0.5 units for visibility. The simulation is done with a
sites and averaged over 20 realizations. In Fig. 2, we showateral system siz&=8192 and averaged over 12 runs. The
the excellent data collapse of the scalg(t,t)/r?* vs t/r?  results indicate that the value af1,|2’p:1 is largely influenced
and (W2(I;X; 1)), /12® vs t/I? with the roughness exponent by the finite time effect and has not reached saturation even
=3/2 and thedynamic exponent=4. The data for the local att> 10%%, which is 4 096 000 even for a quite small value
interfacial width are shifted downward by one unit for vis- ©f 11=8. In contrast, the value af, ;, _, reaches saturation
ibility. The nonsaturation of the scaling functions in Fig. 2 att~I7 as expected and the finite time effect is negligible.
indicates that this system obeys the anomalous dynamic scdrO" completeness, we also study the finite size effect. Figure
ing ansatz described by Eq4) and(2). Since the interface 2 Shows the effective roughness exponegie,- vs timet
of the curvature model gradually develops a macroscopidV!th several different values df in a semilogarithmic plot.
structure, we then numerically measure fta degree re- The simulation is done with realizations equal to 60, 20, and

sidual local interfacial width withp=1 or 2 for the same

system size and realization number as those in Fig. 2. Figurt oot
3 is a log-log plot of the scale@vf,(l;%;t))L/IZ“ vs t/1Z with 2 sge8BoBoseTiovon
p=1 or 2, where the data fgg=2 are shifted downward by i N for p=2 ]
one unit for visibility. Note that, in the continuum limit, the s . 8 S
first order detrending of the curvature model should be suf- . g8%° °}° =]
ficient to suppress the leading anomalous term and let the % [ : o orp=
residual local interfacial width retrieve the conventional = L 8 o -
Family-Vicsek scaling, i.e., reach saturation wher|? . g o O%n6p
However, for finite size and finite timéwa(l;X;t)), suffers [ La® ’ W' o O, 1
from a long crossover before retrieving the conventional osp>"" " 8 o %yap .
scaling; in contrast, the transition &iva(l;%;t)), from the | _,’ » Ogyiogp| |
transient regime to the saturated regime is much sharper, a L
can be seen in Fig. 3. obestffh 1. L T
Hence, to deal with systems with finite time and finite size log,,(#1,")

(as in experimenjs a higher orderthan the theoretical pre-

diction) detrending operation is helpful for removing the in-  FIG. 4. The effective roughness exponent, (1) vs the res-
fluence of macroscopic structure formation on the scalingaled time t/I? with z=4 in a semilogarithmic plot for the
behaviors of superrough interfaces. To demonstrate this poini + 1)-dimensional curvature model. Note that the resultfe® is
more explicitly, we measure the quantity shifted upward by 0.5 units for visibility.
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®®®®9$®®6®®@®®96 APPENDIX A

® Equation(15) can be first recast as follows:
2 p 112 ” "
12 | e [ 200 +17) 2r
=3 s e 22
osf-_® 2 q=0 12

112 " "
- | ~(29+1) dr”Pq(Z(r bl )>Pq<2i>
112-r l I

) | ' | ' | '
00 2 4 6 8

p
log,f = 3 [Aq-Bql. (A1)
=0

Og16.2
T
®
—
S
1

x O +

FIG. 5. The effective roughness exponenj;s At) vs timet
with several different lateral system sizesin a semilogarithmic

- , From the definition of the Legendre polynomig(x) and
plot for the (1+1)-dimensional curvature model.

the orthogonal relatiofi20]

5 for the lateral system side=2'0, 22 and 24 respectively. 0 forn=0,1,...q-1,
The results indicate that the finite size effect does not have a WP (x)dx= |
significant influence on the values of the effective roughness dx=7(__at for n=q

g -1 20+ DN '
exponentsay ;,, @s can be seen in Fig. 5. In other words, (2g+ 1N

the residual local interfacial widttv, is used to extract the (A2)
true scaling originating from the stochastic nature of the sys-

tem by discarding the influence of macroscopic structureit js straightforward to obtain

When measuring the scaling exponents of superrough inter-

faces in experiments, the first, second, etc., order detrending Ag=1.
procedures should be performed in turn until the results are o _ _ .
stable, i.e., independent of the finite time effect. The derivation ofB, is much more complicated. First, by

a change of variablé=1/2-r"/l, we have

IV. CONCLUSION

=(2 +1If drP,(1 + 2(r/l) = Zr)P4(1 - 2r).
In conclusion, we undertook a study on (2q+1) 0 dl (rf) Pdl )

(1+1)-dimensional superrough growth processes. We first

. ) . A3
worked out the exact relations among the local interfacial (A3)
width w, the correlation functiorG, and thepth degree re- - A
sidual local interfacial widthw, with p=1.2,3..... The - Pocduenty, by substituting the known relatao]
relations obtained are exact and thus can be applied to any q

(1+1)-dimensional grovx_/th processes in the continuum limit, Py(1+20 = > (q )(q )Xm (A4)
no matter whether the interface is superrough or not. Then, =0

an investigation of the influence of the macroscopic structure
formation on the scaling behavior of the superrough growthnto the above equation and with some tedious calculation,
processes is undertaken. In addition, we explicitly showeqye obtain
that the residual local interfacial width, excludes only the

influence of the macroscopic structure on the scaling behav-

n+1
ior of the system and retains the true scaling behavior origi- = (2q+ 1)|2 (rfh)
nating from the stochastic nature of the system. Finally, we o (n+1)!
studied a class of linear growth equations E2@) and a n "
superrough growth modéthe curvature modgfor demon- x| > (= D™g+n-m!(g+m)
stration. 0(q—n+m)!(q—m)!m!(n—m)!

( )n+l
ACKNOWLEDGMENTS =(2q+ 1)'% n+ DI th(29+1,0), (A5)
n=

The work of N.-N.P. is supported in part by the National
Science Council of the Republic of China under Grant No.wheret, is the Chebyshev polynomigR0]. By employing
NSC-92-2112-M002-017. The work of W.-J.T. is supportedthe property
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tone1(20+1,0) =0,

n g+n
tn(29+1,0)=(-1) (2n)'< )( on )

we then obtain

(_ ) g+n r 2n+1
(2q+1)|n202n+1( )( n )(I_) '

Finally, by using the relation given in EgA4), By is then

recast as

(A6)

r i 2
Bq=(29+ 1)f Pq(1—2(|—> )d?.
0

Consequently, the kernél,(r) is derived as Eq(16).

APPENDIX B

Here, we will derive the most important feature of the

PHYSICAL REVIEW E 70, 036115(2004)

f df g() 2\2
—r 2q+1

we then haveiq:—'éqzlzﬁ+2/(2ﬁ+ 1) and thus
| P
f drr?PK,(r) = > C,
0 g=0
1/ 126+2 1 1-F\A
IR
a\2p+1)) '\ 2

p
x[E(2q+1)Pq(F>]

a=0

~ |2ﬁ+2(p+ 1) 1 1
" 2P22p+1) f_l ar=m)

><[Pp(F) - Pp+1(F)]; (BS)

kernelK,(r), Eq.(18). First, with 8 being a positive number para we have used the relatig20]

and substituting Eq(16) for K(r), we have
2pB+2
f drr2PK(r) = 2 l2,8+ 1
'l; 2
xf ol?fP drrzBPq(l—2<T) )}

p 2B+2
I 20+1
— E l ( q >|2,8+1

=0 2B+1 2B8+1
| ~\ 2

xf d?Pq(1—2<£) )+<2q+1>
0 | 2B+1
| 'r\ 2

X f d??2B+1Pq(1—2(—> )}
0 |

p
= > [Aq+By+Cyl.
g=0

-(29+1)

(B1)

With a change of variablé=1-2(7/1)?, hAq Eq, andf:q can
be recast as follows:
|2ﬁ+2

ARPY L

~ |2,B+2 2q+1 1 (")
Bq__<23+1)< 2\5) T

~ [ 12842 2q+1)f1 (1_—?)3
Cq_(zgu)( 4 _1dF 5 ) P (B2)

Next, by employing the relatiof20]

(p + 1)[Pp(F) B Pp+1(F)]
1-7

p
> 29+ DPy(M) =
g=0

in deriving the last expression in E@B3).

(i) For B=1,2, ... p, by employing the orthogonal rela-
tion for the Legendre polynomial given in EGA2), we eas-
ily obtain [LdF(1-T)P P, (or p+1y()=0 and, thus,
Jodrr2K,(r)=0.

(i) For any positive numbe(including nonintegens 8

#1,2,...p, by using the relatioi20]
_ 1 df() N
f (OPMI= | )P, (B4)
it is straightforward to obtain
! 5 (- )P2AT (B
_F)B-1 =
L‘ml O F g prn Y

with I" denoting the Gamma functid20]. Consequently, we
have

(p+1) ]

|
2B — |2B+2 —
Jod" 0! {2“2(2[%1)

1
Xf dF(1 =T)PPy([F) = Ppes(F)]
-1

- |2ﬁ+2[ (- P(p+ VI (BT (B+1) }
4B+ 2T (B-pL(B+p+2) |
(86)
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